External Validation of Major Adverse Cardiovascular Events’ Predictors in ST-Segment Elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention

Authors

  • Robert Adrianto Raharjo Program Studi Jantung dan Pembuluh Darah Fakultas Kedokteran Universitas Diponegoro, Indonesia
  • Susi Herminingsih Program Studi Jantung dan Pembuluh Darah Fakultas Kedokteran Universitas Diponegoro/ KSM Jantung RSUP Dr. Kariadi, Indonesia
  • Pipin Ardhianto Program Studi Jantung dan Pembuluh Darah Fakultas Kedokteran Universitas Diponegoro/ KSM Jantung RSUP Dr. Kariadi, Indonesia
  • Yan Herry Program Studi Jantung dan Pembuluh Darah Fakultas Kedokteran Universitas Diponegoro/ KSM Jantung RSUP Dr. Kariadi, Indonesia

DOI:

https://doi.org/10.36408/mhjcm.v8i2.569

Keywords:

ST-segment elevation myocardial infarction, primary percutaneous coronary intervention, KARIADI risk score, external validation

Abstract

BACKGROUND: KARIADI risk score is a 0-to-9 point system based on Killip class, final TIMI flow, total ischemic time, creatinine level, blood glucose, systolic blood pressure, and age. This score was developed to predict the risk of in-hospital major adverse cardiovascular events (MACE) (a composite of death, stroke, urgent revascularization, cardiogenic shock, acute pulmonary edema, or arrhythmia) in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous intervention (PPCI), but its performance has never been validated externally.

OBJECTIVE:  To perform external validation on KARIADI risk score.

METHOD: This study was a prospective cohort study on 109 STEMI patients undergoing PPCI in Dr. Kariadi General Hospital during January-November 2020. Each sample underwent KARIADI risk score assessment and follow-up for in-hospital MACE. The risk score validation was performed by assessing calibration [measured with calibration-in-the-large (alpha), calibration slope (beta), and calibration plot] and discrimination performance [measured with c-statistic and receiver operating characteristic curve).

RESULT: Eighteen patients (16.5%) had MACE. KARIADI risk score demonstrated unsuitable calibration (alpha -0.39, beta 0.71, unfit calibration plot) and moderate discrimination performance (c-statistic 0.75, 95% CI 0.62-0.87).

CONCLUSION: KARIADI risk score is not valid in predicting in-hospital MACE in patients with STEMI undergoing PPCI.

Keywords: ST-segment elevation myocardial infarction, primary percutaneous coronary intervention, KARIADI risk score, external validation

Downloads

Download data is not yet available.

References

1. Yeh RW, Sidney S, Chandra M, Sorel M, Selby J V., Go AS. Population trends in the incidence and outcomes of acute myocardial infarction. N Engl J Med 2010; 362: 2155–2165.
2. Widimsky P, Wijns W, Fajadet J, De Belder M, Knot J, Aaberge L, et al. Reperfusion therapy for ST elevation acute myocardial infarction in Europe: Description of the current situation in 30 countries. Eur Heart J 2010; 31: 943–957.
3. Dharma S, Andriantoro H, Purnawan I, Dakota I, Basalamah F, Hartono B, et al. Characteristics, treatment and in-hospital outcomes of patients with STEMI in a metropolitan area of a developing country: an initial report of the extended Jakarta Acute Coronary Syndrome registry. BMJ Open 2016; 6: e012193.
4. Prara Miftah Rahmi. Major Adverse Cardivascular Events During Treatment At ST-Segment Elevation Myocardial Infarction (STEMI) In Dr. M. Djamil Hospital Padang [Thesis].
5. Arso IA, Setianto BY, Taufiq N, Hartopo AB. In-hospital major cardiovascular events between STEMI receiving thrombolysis therapy and primary PCI. Acta Med Indones 2014; 46: 124–130.
6. Sitorus MRP, Ketaren I, Yanti SN. Simplified Clinical Electrocardiogram Score Sebagai Faktor Prediktor Mortalitas pada Pasien Infark Miokard Akut di Intensive Cardiac Care Unit (ICCU) RSUD DR.Soedarso. Yars Med J 2016; 24: 166–174.
7. Asrial AA, Herry Y, Anggriyani N, Suhartono, Bahrudin U. KARIADI risk score: an attempt to stratify intensive care needs after primary percutaneous coronary intervention. Eur Hear J Supp 2019; 21: F76.
8. Altman DG, Royston P. What do we mean by validating a prognostic model?? Stat Med 2000; 19: 453–473.
9. Moons KGM, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: what, why, and how? BMJ 2009; 338: b375.
10. Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research: validating a prognostic model. BMJ 2009; 338: b605.
11. Vergouwe Y, Steyerberg EW, Eijkkemenas MJC, Habbema JDF. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol 2005; 58: 475–483.
12. Dahlan S. Penelitian Prognostik dan Sistem Skoring. Jakarta: Alqa Prisma Interdelta Jatinangor, 2016.
13. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and calibration of clinical prediction models. JAMA 2017; 138: 1377–1384.
14. Steyerberg EW. Clinical prediction models: a practical approach to development, validation, and updating. New York: Springer, 2009.
15. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2018; 39: 119–177.
16. Pessoa-Amorim G, Camm CF, Gajendragadkar P, De Maria GL, Arsac C, Laroche C, et al. Admission of patients with STEMI since the outbreak of the COVID-19 pandemic: a survey by the European Society of Cardiology. Eur Hear J Qual Care Clin Outcomes 2020; 6: 210–216.
17. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015; 162: W1–W73.
18. Kirkwood BR, Sterne JAC. Essential Medical Statistics. 2nd ed. Massachusetts: Blackwell Publishing, 2003.
19. Fox KAA, Anderson FA, Dabbous OH, Steg PG, López-Sendón J, Van De Werf F, et al. Intervention in acute coronary syndromes: Do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE). Heart 2007; 93: 177–182.
20. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Hear J 2014; 35: 1925–1931.

Additional Files

Published

2021-07-15

How to Cite

1.
Raharjo RA, Herminingsih S, Ardhianto P, Herry Y. External Validation of Major Adverse Cardiovascular Events’ Predictors in ST-Segment Elevation Myocardial Infarction Patients Undergoing Primary Percutaneous Coronary Intervention. Medica Hospitalia J. Clin. Med. [Internet]. 2021 Jul. 15 [cited 2024 Dec. 26];8(2):185-93. Available from: http://medicahospitalia.rskariadi.co.id/medicahospitalia/index.php/mh/article/view/569

Issue

Section

Original Article

Citation Check