The Effect of Robotic Therapy on Range Of Motion and Musle Tone in Ischemic Stroke Patients
DOI:
https://doi.org/10.36408/mhjcm.v8i1.530Keywords:
Stroke, elbow active ROM, muscle tone, exoskeleton roboticAbstract
Background:
After stroke occurs, the patients generally have upper extremity hemiparesis. It makes movement restrictions due to decreased elbow active ROM and abnormal upper arm muscle tone, so they need to get rehabilitation therapy. Besides conventional therapy, robotic therapy has now been developed to restore their motor funtions.
Objective:
To prove that the effect of robotic therapy in increasing elbow active ROM and improving upper arm muscle tone in ischemic stroke patients is better than the effect of conventional rehabilitation exercises.
Methods:
A quasy-experimental study with two groups pre-test and post-test design was carried out among outpatient ischemic stroke patients in Diponegoro National Hospital and William Booth General Hospital Semarang which was chosen using consecutive sampling.The interventions were by doing exercises using an exoskeleton robotic hand in the robotic group and conventional rehabilitation exercises in the control group. Pre-test and post-test data of robotic group were analyzed using Wilcoxon test, while pre-test dan post-test data of control group were analyzed using Wilcoxon test and paired t-test. Pre-test an post-test data between two groups were analyzed using Mann-Whitney test and unpaired-t test.
Results:
The robotic group experienced an insignificant increase in ROM (p= 0,593) and significant improvement in muscle tone (p= 0,025). The control group experienced insignificant reduction in ROM (p= 0,980) and insignificant improvement in muscle tone (p= 0,081).
Conclusion:
There was a significant improvement of upper arm muscle tone in ischemic stroke patients after had exoskeleton robotic hand exercise.
Keywords: Stroke, elbow active ROM, muscle tone, exoskeleton robotic
Downloads
References
Kemenkes RI. Kebijakan dan Strategi Pencegahan dan Pengendalian Stroke di Indonesia. Jakarta: Direktorat Jenderal Pencegahan dan Pengendalian Penyakit; 2018.
Kemenkes RI. Hasil Utama Riset Kesehatan Dasar 2018. Jakarta: Badan Penelitian dan Pengembangan Kesehatan; 2018.
Högg S, Holzgraefe M, Wingendorf I, Mehrholz J, Herrmann C, Obermann M. Upper limb strength training in subacute stroke patients: Study protocol of a randomised controlled trial. Trials. 2019;20(1):1–11.
Da Silva FC, Da Silva DFT, Mesquita-Ferrari RA, Fernandes KPS, Bussadori SK. Correlation between upper limb function and oral health impact in stroke survivors. J Phys Ther Sci. 2015;27(7):2065–8.
Eby S, Zhao H. Quantitative Evaluation of Passive Muscle Stiffness in Chronic Stroke. J Phys Med Rehabil. 2017;176(1):139–48.
De Haan J. Stability of the Elbow Joint: Relevant Anatomy and Clinical Implications of In Vitro Biomechanical Studies. Open Orthop J. 2011;5(1):168–76.
Oosterwijk AM, Nieuwenhuis MK, van der Schans CP, Mouton LJ. Shoulder and elbow range of motion for the performance of activities of daily living: A systematic review. Physiother Theory Pract. 2018;34(7):505–8.
Li S. Spasticity, motor recovery, and neural plasticity after stroke. Front Neurol. 2017;8(4):1–8.
Susanti S, B Istara DN. Pengaruh Range of Motion (ROM) terhadap Kekuatan Otot pada Pasien Stroke. J Kesehat Vokasional. 2019;4(2):112.
Saebo. Stroke Exercises for Your Body [Internet]. United Kingdom; 2017 [cited 2020 Feb 7]. p. 26–8. Available from: https://www.saebo.com/wp-content/uploads/2018/06/stroke-exercises-for-your-body
Brewer B. Full Body Rehab Exercises [Internet]. California; 2018 [cited 2020 Feb 11]. p. 9–12. Available from: https://www.flintrehab.com
Kemenkes RI. Rencana Pengembangan Tenaga Kesehatan Tahun 2011 – 2025. Jakarta; 2011.
Xiloyannis M, Chiaradia D, Frisoli A, Masia L. Physiological and kinematic effects of a soft exosuit on arm movements. J ofNeuroEngineering Rehabil. 2019;16(29):1–15.
Yue Z, Zhang X, Wang J. Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav Neurol. 2017;16(8):3–6.
Bertani R, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol Sci. 2017;38(9):1561–9.
Frisoli A, Procopio C, Chisari C, Creatini I, Bonfiglio L, Bergamasco M, et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. J Neuroeng Rehabil. 2012;9(1):1–16.
Balasubramanian S, Klein J, Burdet E. Robot-assisted rehabilitation of hand function. Curr Opin Neurol. 2010;23(6):661–70.
Frolov AA, Kozlovskaya IB, Biryukova E V., Bobrov PD. Use of Robotic Devices in Post-Stroke Rehabilitation. Neurosci Behav Physiol. 2018;48(9):1053–66.
Cerasa A, Pignolo L, Gramigna V, Serra S, Olivadese G, Rocca F, et al. Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study. Front Neuroinform. 2018;12(7):1–10.
Crea S, Cempini M, Moise M, Baldoni A, Trigili E, Marconi D, et al. A novel shoulder-elbow exoskeleton with series elastic actuators. Biomed Robot Biomechatronics. 2016;16(7):1248–53.
Dinh BK, Xiloyannis M, Cappello L, Antuvan CW, Yen SC, Masia L. Adaptive backlash compensation in upper limb soft wearable exoskeletons. Rob Auton Syst. 2017;92(18):173–86.
Jones TA, Adkins DL. Motor system reorganization after stroke: Stimulating and training toward perfection. Int Union Physiol Sci. 2015;30(5):358–70.
Rotzinger DC, Mosimann PJ, Meuli RA, Maeder P, Michel P. Site and rate of occlusive disease in cervicocerebral arteries: A CT angiography study of 2209 patients with acute ischemic stroke. Am J Neuroradiol. 2017;38(5):868–74.
Robert M, Norhayati M. Chapter 3: Background Concepts in Stroke Rehabilitation [Internet]. 2018 [cited 2020 Feb 11]. p. 34. Available from: www.ebrsr.com
Park W, Ramachandran J, Weisman P, Jung ES. Obesity effect on male active joint range of motion. Ergonomics. 2010;53(1):102–8.
Borboni A, Villafañe JH, Mullè C, Valdes K, Faglia R, Taveggia G, et al. Robot-Assisted Rehabilitation of Hand Paralysis After Stroke Reduces Wrist Edema and Pain: A Prospective Clinical Trial. J Manipulative Physiol Ther. 2017;40(1):21–30.
Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(2):425–37.
Chowdhury A, Nishad SS, Meena YK, Dutta A, Prasad G. Hand-Exoskeleton Assisted Progressive Neurorehabilitation Using Impedance Adaptation Based Challenge Level Adjustment Method. IEEE Trans Haptics. 2019;12(2):128–40.
Thibaut A, Chatelle C, Ziegler E, Bruno MA, Laureys S, Gosseries O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 2013;27(10):1093–105.
Anita F, Pongantung H, Ada PV, Hingkam V. Pengaruh Latihan Range Of Motion terhadap Rentang Gerak Sendi Ekstremitas Atas pada Pasien Pasca Stroke Di Makassar. J Islam Nurs. 2018;3(1):97–9.
Purwaningtyas D. Pengaruh Pemberian Hold Relax terhadap Spastisitas pada Pasien Pasca Stroke. J Nas Ilmu Kesehat. 2016;22(03):84–8.
Additional Files
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2021 Medica Hospitalia : Journal of Clinical Medicine
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyrights Notice
Copyrights:
Researchers publishing manuscrips at Medica Hospitalis: Journal of Clinical Medicine agree with regulations as follow:
Copyrights of each article belong to researchers, and it is likewise the patent rights
Researchers admit that Medica Hospitalia: Journal of Clinical Medicine has the right of first publication
Researchers may submit manuscripts separately, manage non exclusive distribution of published manuscripts into other versions (such as: being sent to researchers’ institutional repository, publication in the books, etc), admitting that manuscripts have been firstly published at Medica Hospitalia: Journal of Clinical Medicine
License:
Medica Hospitalia: Journal of Clinical Medicine is disseminated based on provisions of Creative Common Attribution-Share Alike 4.0 Internasional It allows individuals to duplicate and disseminate manuscripts in any formats, to alter, compose and make derivatives of manuscripts for any purpose. You are not allowed to use manuscripts for commercial purposes. You should properly acknowledge, reference links, and state that alterations have been made. You can do so in proper ways, but it does not hint that the licensors support you or your usage.